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LETTER TO THE EDITOR 

A simple numerical method for the determination of relativistic 
one-dimensional band structures 

B Mtndez and F Dominguez-Adame 
Departamento de Fisica de Materiales, Facultad de Ciencias Fisicas, Universidad 
Complutense, 28040-Madrid. Spain 

Received 26 November 1990 

Abstract. A discretired form of the one-dimensional D i m  equation is salved to study 
relativistic band structures. Properties of periodic continued fractions are used to find the 
dispersion relation inside allowed bands. The Mathieu potential is considered and it is 
found that relativistic effects cause a reduction of the width of allowed bands and gaps. 
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in solid state (Roy 1986) and nuclear physics (McKellar and Stephenson 1987, Clerk 
and McKellar 1990). Exact solutions of the Dirac equation for the Kronig-Penney 
potential-periodic array of square wells or barriers-have been found (StCslicka and 
Davison 1970), even for the &function limit-wells or barriers with zero width and 
constant area-in monoatomic and polyatomic crystals (Dominguez-Adame 1987, 1989 
and references therein). Nevertheless, better approximations to real systems may be 
reached by means of more structured potentials. In this way, the Mathieu potential is 
a good candidate for the crystal field for high energy electrons (StCslicka er a/ 1970). 
Unfortunately, no exact solutions of the Dirac equation for potentials other than the 
Kronig-Penney potential are available. An alternative way to study relativistic effects 
on the energy spectrum could be the perturbative approach, by treating the mass- 
velocity correction as a perturbation term in the Schrodinger Hamiltonian (St6slicka 
et al 1970). This approximation, however, remains valid whenever the momentum of 
the particle is negligible compared with its rest mass. Therefore, more accurate results 
may be found by solving numerically the Dirac equation. 

There exist, at present, several numerical methods for one-dimensional band calcu- 
lations based on the discretized Schrodinger equation (Vigneron and Lambin 1979, 
Killingbeck 1980), whereas the Dirac equation has received no attention. The present 
letter deals with a simple numerical method to solve the Dirac equation for one. 
dimensional periodic potentials. Our treatment adopts ideas of the previous work of 
Vigneron and Lambin (1579) for non-relativistic band structures. These authors have 
used a continued fraction approach to find the dispersion relation inside the allowed 
bands and the energy of band edges. We wish to show that this approach can be 
generalized to relativistic calculations with a little additional effort. Besides the periodic- 
ity, we require the potential to be symmetric around atomic positions. This limitation 
is not a several restriction to simulate real crystals. 

We start with the one-dimensional Dirac equation for steady states ( h  = e = 1) 

[-iad+pm+ V ( x ) - E ] Q ( x )  = O  (1) 
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where +(x) is the two-component wavefunction, rr and P are 2 x 2 traceless, Hermitian 
matrices with square unity, and J-d/dx. To solve the Dirac equation we set the 
standard representation (I = ax and p = uz, us being the Pauli matrices. Denoting by 
4 and ,y the upper and lower components of the wavefunction, we obtain 

(20) 

( 2 6 )  

-iJ+(x)+[ V(x)-E - m]x(x) = O  

-iJ,y(x)+ [ V(x) - E + m]+(x) = 0. 

For simplicity, we define E = E - m and take m = f. Hence we get 

and 

'(') 
J+(x) + [ V2(x) + E ( E + 1) - (28 + 1) V(x)]+(x) = 0 J 2 W )  - v(x) - & - 1 

We can deal only with the upper component since the lower component may be found 
using (30). 

Now we consider periodic potentials such that V(x + L)  = V(x), L being the period. 
Let us divide the unit cell [0, L]  into N+ 1 equal parts of length h = L / ( N +  l) ,  which 
defines the grid x. = nh ( n  = 0, 1 , .  . . , N). The discretized form of (36) at any point 
of the grid is 

(1 - d # 4 x n + d + ( 1  + 4 + ( x n - , ) - ( 2 -  bn)4(xn) = O  (4) 

Since the Bloch theorem must he satisfied, the upper component may be written 
as +(x) =exp(ikx)U(x), with U(x+L)  = U(x) (equation (3) ensures that x(x)  is also 
a Bloch function). If we define 

The definition of R. and the periodicity of U(x) give rise to the boundary condition 
Ro= R N + , .  Hence (7)  leads to the following periodic continued fraction 

-a,  
-a2 

R , = P , +  
82 + 

which may he regarded as an equation for r,. To solve (8) we define the nth numerator 
A. denominator B,, through the relations (Wall 1967) 

(9) 
An+, = P n + A - ~ n + i A n - t  

&+I =Pn+2Bn-nn+tBn-1  n = 0, 1, . . . , N 
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with the initial values A - , = B , = l ,  A,,=& and B-,=O. Note that A .  = A . ( € )  and 
B. =Bo(€)  but they do not explicitly depend on any particular value of k. The 
determinant of the transformation is 

The periodicity of the continued fraction allows us to write the equation for Ro in 
terms of As and Bs 

BNRi-(aN+IBN--I + A N ) R o +  ~ N + I A N - I = O .  (11 )  

Some particular results are required to complete our treatment. We quote these 
results as follows 

The first equation is found by substituting the value of R, ( 6 c )  in the left-hand side. 
Equation (126) may be verified by induction, by analogy with the non-relativistic 
treatment of Vigneron and Lambin. Finally, (12c) is easily checked by using ( 1 1 )  and 
(12b). 

If V ( x )  is symmetric around atomic positions, one can show that (see appendix) 

Note that this result is straightforward in the non-relativistic limit, since U ,  + 1. 
Nevertheless, the result (12d) is only valid in the relativistic case provided V ( x ) =  

In order to study the dispersion relation E = E (  k) of the Dirac particle in the periodic 
V ( - x ) .  

potential, we analyse the discriminant of the algebraic equation ( l l ) ,  defined as 

A s  (uN+,BN_,+AN)~-~uN+IAN-,BN. 

Using (10) and (12d), the discriminant may be written as 

A =  ( A N - a N + , B N - , ) * - 4 .  (14) 

There exist two possible cases, namely 

( a )  ASO. From (11) we obtain 

Using the above results, (12). and defining the energy-dependent quantity 

PN+I = P N + I ( E ) =  (AN -UN+lBN-l)/2 (16) 
which is calculated recursively from (9), one can get 
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so the dispersion relation is found to be 

cos kL= P N + , ( e ) .  (18) 
Therefore, the dispersion relation admits real values for the crystal momentum k and 
the corresponding energy belongs to an allowed band. From (17) we find that ~ ( k )  = 
~ ( - k ) ,  as expected from time reversal invariance. 

( b )  A > 0. In a similar way, it is an easy matter to show that in this case lexp(ikl)l> 1 
and then the crystal momentum k becomes complex. Hence forbidden gaps appear 
since the corresponding wavefunctions diverge at spatial infinity. 

As an example of this method, we have studied numerically the relativistic Mathieu 
problem. The Mathieu potential can explain the interaction of high-energy electrons 
with crystals, so the relativistic treatment is indeed required. This potential is written 
as 

V(X) = v, cos 2x 
which satisfies the condition V(x) = V( -x). The convergence of the numerical approach 
has been discussed by Vigneron and Lambin for the non-relativistic case. In the case 
of the Dirac equation, we have checked that accurate results are usually found taking 
about 50-100 points in the subdivision. However, the number of these points have to 
be greater to calculate the dispersion relation of higher bands. For small values of V,, 
both non-relativistic and relativistic numerical dispersion relations are rather similar, 
as could be expected from the general features of the Dirac equation. For large values 
of V,, however, both treatments show different features, as seen in figure 1 for 
V, = 0.2 = 0.4m. We observe that relativistic effects reduce the width of allowed bands 
and gaps. Figure 2 shows the width of the first allowed band A E ,  as a function of the 
potential depth V,, illustrating the reduction just mentioned. The variation of the first 
gap against V, is depicted in figure 3. This gap is of the form E~ = V, in the non-relativistic 
case. In contrast, E* presents a sublinear dependence on V, for relativistic particles 
(the broken line shows the linear extrapolation of values up to V,= 0.2). The potential 
becomes overcritical for values of V, larger than 2m = 1, since the minimum of V ( x )  
dives into the negative-energy states. Hence a single-particle treatment losses validity. 

0.5 &fiI 0.0 0.0 0.5 1.0 

k 
Figure 1. Non-relativistic and relativistic band structures for a panicle of maw m =0.5 in 
the potential V ( x )  = V, cos 2x. with V, = 0.2. 
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Figure 2. Variation of the width of the first allowed band as a function of the potential 
depth V,, for both non-relativistic and relativistic treatments. 
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Figure 3. Variation of the width of the first gap as a function of the potential depth V,, 
for bath non-relativistic and relativistic treatments. The broken line shows the linear 
extrapolation for values up to V, = 0.2 for relativistic parlides. 

The authors thank Dr M L Glasser for helpful comments. 

Appendix 

Equation (12d) can be written in the form 

where 
N+I 

F ( h )  = n {4[ V(X.)- E - 13- V(X.+ h ) +  V(X. - h ) ] .  
n = 0  
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Reversing the order of the product with the substitution n + N +  1 - n  and using that 
x,.,+,-~ = L - x .  we obtain 

N+I 

F ( h )  = n {4[ V (  L-x,,) - E - 11 - V ( L - x .  + h ) +  V ( L - x .  - h ) } .  (M)  
n=o 

T h e  periodicity of the potential and the symmetry around the atomic positions lead 
to V ( L - x . )  = V(x . ) ,  so we finally find that the function F ( h )  satisfies 

F ( h ) = F ( - h ) .  (A41 

Therefore, equation (Al )  ensures that S N + I  = 1. 
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